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Characteristics of phonation onset were investigated in a two-layer body-cover continuum model of
the vocal folds as a function of the biomechanical and geometric properties of the vocal folds. The
analysis showed that an increase in either the body or cover stiffness generally increased the
phonation threshold pressure and phonation onset frequency, although the effectiveness of varying
body or cover stiffness as a pitch control mechanism varied depending on the body-cover stiffness
ratio. Increasing body-cover stiffness ratio reduced the vibration amplitude of the body layer, and
the vocal fold motion was gradually restricted to the medial surface, resulting in more effective flow
modulation and higher sound production efficiency. The fluid-structure interaction induced
synchronization of more than one group of eigenmodes so that two or more eigenmodes may be
simultaneously destabilized toward phonation onset. At certain conditions, a slight change in vocal
fold stiffness or geometry may cause phonation onset to occur as eigenmode synchronization due to
a different pair of eigenmodes, leading to sudden changes in phonation onset frequency, vocal fold
vibration pattern, and sound production efficiency. Although observed in a linear stability analysis,

a similar mechanism may also play a role in register changes at finite-amplitude oscillations.
© 2009 Acoustical Society of America. [DOI: 10.1121/1.3050285]

PACS number(s): 43.70.Bk, 43.70.Gr [AL]

I. INTRODUCTION

The vocal folds are complex layered structures consist-
ing of a muscular layer at the base, multiple layers of lamina
propria in the middle, and an outmost epithelium layer. The
geometry and mechanical properties of these different layers
can be altered by laryngeal adjustments or due to vocal pa-
thologies. Such changes often lead to qualitatively distinct
vocal fold vibration and voice quality (Titze, 1994; Colton
and Casper, 1996). An ultimate goal of voice production re-
search is to understand and predict the acoustic consequences
of such changes in geometry and biomechanical properties of
the vocal folds. The influence on phonation onset frequency,
phonation threshold pressure, and vocal fold vibration char-
acteristics is of particular interest.

The influence of biomechanical properties of the vocal
folds on phonation has been the focus of many previous
works. Due to their simplicity, lumped-mass models were
often used in these studies. For example, based on a body-
cover representation of the vocal fold, Titze er al. (1988)
used a string model to study pitch control mechanisms in
human phonation. They showed that although the contraction
of the cricothyroid (CT) muscle always causes the phonation
frequency to increase, the contraction of the thyroarytenoid
(TA) muscle may decrease or increase the phonation fre-
quency depending on the effective depth of the vocal fold in
vibration. Using a three-mass body-cover model, Story and
Titze (1995) showed that a variety of vocal fold vibration
patterns can be produced using different combinations of
body and cover stiffnesses. Increasing body stiffness gener-
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ally leads to lower body layer amplitudes and higher pitches.
In a recent study, Tokuda er al. (2007) used a three-mass
cover-only model to study chest-falsetto register transition (a
sudden qualitative change in vocal fold vibration pattern,
see, e.g., Titze, 1994; Svec et al., 1999). They showed that
such an abrupt transition occurs as a spontaneous shift in
dominance between different eigenmodes of the vocal folds.
In their study, such shift was induced by variation in the
stiffness of the middle mass, which caused the vocal fold
vibration to switch from being dominated by the first eigen-
mode of the vocal folds to being dominated by the third
eigenmode of the vocal folds.

Although lumped-mass models provide valuable insights
into the physics of phonation, their use in practical applica-
tions is limited. Because of the lack of direct correspondence
to realistic, directly measurable properties of the vocal folds,
model parameters of lumped-mass models need to be esti-
mated. This is often difficult, if not impossible, as some
model parameters are dynamic variables of the coupled
fluid-structure system, which cannot be determined a priori.
For example, Titze et al. (1988) showed that the effective
depth of vibration is an important factor in the determination
of phonation frequency. However, evaluation of the effective
depth of vibration requires information on the vibration field
within the vocal fold structure, which is generally unknown
and highly depends on the specific biomechanical properties
of the vocal folds. It is still unknown how much control the
human has over the effective depth of vibration (Titze et al.,
1988). Similarly, the coupling stiffness between the upper
and lower masses in the two-mass model and its variants
(e.g., Ishizaka and Flanagan, 1972; Story and Titze, 1995)
determines the phase difference between the two masses and
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therefore the phonation threshold pressure (Titze, 1988).
However, it remains unknown how the body and cover stiff-
nesses would affect this coupling stiffness. Estimation of
these important model parameters is extremely difficult and
often requires knowledge of the vocal fold vibration field
that is to be solved for. This difficulty makes the lumped-
mass models less appealing for use in practical applications
in which the influence of the realistic vocal fold geometry
and changes in local biomechanical properties needs to be
evaluated. Furthermore, lumped-mass models may have
oversimplified the underlying physics of phonation. For ex-
ample, the superior-inferior component of the vocal fold mo-
tion, which has been shown to have a pronounced effect on
phonation (Ishizaka and Flanagan, 1977; Titze and Talkin,
1979; Zhang et al., 2006a, 2006b), was often neglected in
lumped-mass models of phonation.

For practical applications, a better description of the un-
derlying physics and a realistic representation of the vocal
fold geometry are required. Based on continuum mechanics,
continuum models allow vocal fold dynamics to be calcu-
lated from directly measurable parameters such as biome-
chanical properties (or preferably the degree of laryngeal
muscle contraction) and realistic geometric parameters of the
vocal folds. Recent studies (Zhang er al., 2006a; Zhang,
2008) show that geometric details of the vocal folds may
have a large impact on vocal fold vibration. A better under-
standing of how realistic vocal fold geometry would affect
the vocal fold eigenmodes and the eigenmode synchroniza-
tion process may also provide new insights into mechanisms
of register change. Furthermore, continuum models allow a
natural representation of the biomechanics of the layered
structure of the vocal folds. Such realistic representation of
the vocal fold biomechanics is particularly critical for the
modeling of vocal pathologies, for which changes in biome-
chanical properties are often localized (e.g., local stiffening
due to vocal fold scarring).

There has been an increasing amount of work on con-
tinuum modeling of phonation (e.g., Titze and Talkin, 1979;
Alipour et al., 2000; De Oliveira Rosa et al., 2003; Thomson
et al., 2005; Tao and Jiang, 2006). However, the influence of
biomechanical properties and geometry of the vocal folds on
phonation has not been systematically investigated. Such in-
vestigation would require a scan of the dynamic behavior of
the coupled fluid-structure system over a large range of the
parameter space, which is generally computationally expen-
sive when continuum models are used. Such an approach
was used in Titze and Talkin (1979) but at the cost of a
reduced spatial resolution. Using a linear stability analysis
approach, the influence of geometric and biomechanical
properties of the vocal fold on phonation onset can be inves-
tigated at a less demanding computational cost, as shown in
a recent study (Zhang et al., 2007). In that paper, mecha-
nisms of phonation onset were investigated in an isotropic
two-dimensional continuum vocal fold model. They showed
that the primary mechanism of phonation onset is due to the
mode-coupling effect of the flow-induced stiffness, which
causes two vocal fold eigenmodes to synchronize to produce
an unstable eigenmode: Synchronization of two eigenmodes
at the same frequency allows the flow pressure induced by
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FIG. 1. The two-dimensional vocal fold model and the glottal channel. The
coupled vocal fold-flow system was assumed to be symmetric about the
glottal channel centerline, and only the left half of the system was consid-
ered in this study. 7 is the thicknesses of the medial surface of the vocal fold
in the flow direction; D, and D, are the depths of the vocal fold body and
cover layers at the center of the medial surface, respectively; g, is the
minimum prephonatory glottal half-width of the glottal channel at rest. The
divergence angle « is the angle formed by the medial surface of the vocal
fold with the z-axis. Other parameters include the thickness of the cover
layer at the base of the vocal fold, 7, the rounding fillet radius, r, and the
entrance and exit angles of the body and cover layers. The dashed line
indicates the glottal channel centerline.

one eigenmode to interact with the tissue velocity of the
other eigenmode. Synchronization of two eigenmodes at the
same frequency but different phases establishes a flow pres-
sure field that is at least partially in-phase with the vocal fold
velocity, allowing the cross-mode interaction to establish a
net energy flow from airflow into the vocal fold tissue.

In this study, the influence of changes in geometry and
biomechanical properties of the vocal fold on phonation on-
set is investigated in a continuum model of the vocal folds.
The focus is to investigate the influence of the stiffness of
vocal fold body and cover and vocal fold geometry on pho-
nation threshold pressure, phonation onset frequency, vocal
fold vibration, and sound production efficiency. A two-layer
body-cover model of the vocal fold, as suggested by Hirano
(1974), is used. The body layer consists of the muscle fibers,
and the deep layer of the lamina propria. The cover layer
consists of the epithelium, and the superficial and intermedi-
ate layers of the lamina propria, which have no contractile
properties and are generally more pliable than the body layer
(Hirano, 1974). We will show that increasing vocal fold body
stiffness gradually reduces the vibration amplitude of the
body layer and restricts vocal fold motion to the medial sur-
face, which leads to increased sound production efficiency.
At certain conditions, a slight change in the vocal fold stiff-
ness or vocal fold geometry may cause phonation onset to
occur at a different eigenmode, leading to a sudden change in
phonation onset frequency and vocal fold vibration charac-
teristics.

Il. MODEL DESCRIPTION

Figure 1 shows a sketch of the two-dimensional con-
tinuum vocal fold model. For simplicity, a left-right symme-
try in the flow field and vocal fold vibration about the glottal
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channel centerline was imposed, and only half the system
was considered. The vocal fold consisted of two linear plane-
strain elastic layers, including a body layer and a cover layer,
each with distinct Young’s modulus E, Poisson’s ratio v, den-
sity p, and structure loss factor o. The major geometric pa-
rameters of the vocal fold model include the thickness of the
medial surface T, the depths of the body (D,) and cover (D,)
layers at the center of the medial surface, the divergence
angle of the medial surface «, and the minimum glottal half-
width at rest go,. The vocal folds were coupled to a one-
dimensional potential flow driven by a given constant flow
rate Q at the glottal entrance. The flow was assumed to sepa-
rate from the glottal walls at a location downstream of the
minimum glottal constriction whose width was 1.2 times the
minimum glottal width (Lous et al., 1998). A zero pressure
recovery was assumed downstream of the flow separation
point. As no vocal tract was considered, the flow pressure at
the flow separation point was set to zero. Note that the flow
separation model of this study gives only a rough estimation
of the actual flow separation location (Decker and Thomson,
2007). The sensitivity of phonation onset to variations of the
flow separation location was investigated in a separate study
(Zhang, 2008).

A nondimensional formulation of system equations was

used. The vocal fold thickness T, the cover layer density p,,
and the wave velocity of the vocal fold cover layer VE,/p,
were used for the reference scales of length, density, and

velocity, respectively. The nondimensional variables are de-
fined as follows:

T=1, E.=1, p.=1,
Dy=DyT, D.=DJT, go=3o/T,

(1)
Ey=E/E., py=py/Pes Pr=PflPe
PS=I_)S/EC’ Uj=[_]j/ VEc/ﬁc’ f=f/( VEC/F_)C/T),

where p; is the density of air, U; is the mean jet velocity, P
is the mean subglottal pressure, and f is the phonation fre-
quency. The subcripts b and ¢ denote the properties of the
body and cover layers, respectively. Symbols without over-
bars denote nondimensional variables. The physical values
can be recovered by multiplying the nondimensional values
by the corresponding reference scales. Note that the nondi-
mensional body stiffness corresponds to the body-cover stiff-
ness ratio in a dimensional format. Therefore, although the
results below are discussed as a function of the nondimen-
sional body stiffness, they could also be interpreted as a
function of the body-cover stiffness ratio.

For a given flow rate Q at the glottal inlet, the analysis
includes two steps. In the first step, a steady-state problem of
the coupled fluid-structure system is solved to obtain the
deformed vocal fold geometry and the mean flow pressure
distribution along the glottal channel. In the second step, a
linear stability analysis as in Zhang et al. (2007) is per-
formed on the deformed state of the coupled system, and the
eigenvalues and the eigenvectors of the coupled system are
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calculated. To differentiate from the natural modes of the
vocal fold structure, these eigenmodes are referred to as
fluid-structure interaction (FSI) eigenmodes. The deformed
state is linearly stable if all FSI eigenvalues of the coupled
system have negative growth rates. Otherwise the coupled
system is linearly unstable for the given flow rate. This two-
step procedure is repeated for a range of subglottal flow
rates, and the phonation threshold pressure would then be the
corresponding subglottal pressure at which the growth rate of
one FSI eigenvalue first becomes positive.

The steady-state problem of the coupled system was
solved as follows. For a given subglottal flow rate Q and a
zero pressure at the point of flow separation, the mean flow
pressure P(z) along the vocal fold surface at locations up-
stream of the flow separation point was given by

gl )

P(Z) = prHJZ 1 0 (2)
where H is the glottal width along the flow direction and H;
is the glottal width at the point of flow separation. The flow
pressure downstream of the flow separation point was set to
zero. Note that, as mentioned above, H f is a function of the
minimum glottal half-width g and the vocal fold geometry,
which are again functions of the flow pressure distribution
and therefore H;. An iterative approach was used to solve the
steady-state problem. The flow pressure distribution was cal-
culated for an initial value of H;. The structural response
under this flow pressure was then solved using the commer-
cial finite-element-modeling package COMSOL. This de-
formed vocal fold surface geometry was then used to update
H;. This procedure was repeated until a satisfactory conver-
gence in the vocal fold deformation, the flow separation
point, and the minimum glottal width was reached.

The procedure of the linear stability analysis was de-
scribed in detail in Zhang et al. (2007) and is only briefly
summarized here. Readers are referred to the original paper
for a detailed derivation of system equations. Governing
equations for vocal fold dynamics were derived from
Lagrange’s equations:

(M =024 +(C-Q)g+(K-Qpg=0, 3)

where ¢ is the generalized coordinate vector. The three ma-
trices M, C, and K represent the mass, damping, and stiffness
matrices of the vocal fold structure, respectively. A propor-
tional structural damping was assumed for the vocal fold
material so that the structural mass and damping matrices
were related by C=owM, where o is the constant structural
loss factor and w is the angular frequency. The term Q,g
+0,G+Qpq in Eq. (3) is the generalized force associated
with the fluctuating flow pressure along the vocal fold sur-
face as induced by vocal fold vibration. The fluctuating flow
pressure was obtained as follows. First, Bernoulli’s equation
and continuity equation of airflow were linearized (Zhang
et al., 2007) around the mean deformed state of the coupled
airflow—vocal fold system, which was obtained from solving
the corresponding steady-state problem. The boundary con-
ditions for the linearized flow equations included a zero fluc-
tuating flow velocity at the glottal entrance and a zero fluc-
tuating pressure at the flow separation location. The

Zhaoyan Zhang: Phonation onset in a body-cover model 1093



fluctuating pressure was then calculated by solving the lin-
earized flow equations under these boundary conditions. The
fluctuating flow pressure consists of three components, in-
cluding a flow-induced stiffness term (proportional to vocal
fold displacement and represented by matrix Q,), a flow-
induced damping term (proportional to vocal fold velocity
and represented by matrix Q,), and a flow-induced mass term
(proportional to vocal fold acceleration and represented by
matrix Q,). All three matrices are functions of the jet veloc-
ity Uj, which was calculated in the steady-state problem us-
ing the imposed subglottal flow rate and the deformed vocal
fold geometry. Assuming go=g¢*’, Eq. (3) was solved for
the FSI eigenvalues s and FSI eigenvectors g, for a given
flow rate Q.

In Zhang ef al. (2007), Eq. (3) was solved using the Ritz
method, in which polynomial functions were used as basis
functions to approximate the vocal fold displacement field.
In the present study, the natural eigenmodes of the vocal fold
structure were used as basis functions. The vocal fold dis-
placement field w=[w,,w_] was approximated as

N N
we= > GWip w,= > GW ks (4)
k=1 k=1

where [W, ;, W_ ;] was the displacement field associated with
the kth natural eigenmode of the vocal fold structure, g is
the kth generalized coordinate, and N is the number of natu-
ral modes used in the approximation. In this study, N=10
was used. As these natural modes contain information of the
vocal fold dynamics, generally only a few natural modes are
necessary to obtain solutions of reasonable accuracy, which
greatly reduces computational costs. The use of natural
modes as basis functions also allows vocal folds of arbitrary
geometry to be analyzed with no appreciable increase in
computation time. In this study, the natural modes were nor-
malized so that the total kinetic energy of the vocal fold
structure was equal to 1. The generalized force matrices
(Q9,0,,0,) were numerically evaluated using the normal-
ized basis functions.

Note that a positive minimum glottal half-width was as-
sumed, and only the behavior of the system around the pho-
nation onset was investigated in this study. Vocal fold colli-
sion and its influence on phonation onset were therefore not
considered.

lll. RESULTS

This section is organized as follows. In Sec. III A, the
influence of the body-cover stiffness ratio on phonation onset
is first discussed for a straight glottal channel. The influence
on phonation threshold pressure, phonation onset frequency,
vocal fold vibration, and sound production efficiency is dis-
cussed. Results for convergent and divergent glottal channels
are discussed in Sec. III B. Competition of coexisting insta-
bilities for dominance at phonation onset was observed for
convergent glottal channels. This is discussed in Sec. III C.
Due to this competition between coexisting instabilities, a
slight change in either the vocal fold stiffness or the glottal
divergence angle may lead to a sudden change in phonation
onset frequency, vocal fold vibration, and sound production
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efficiency. The influence of other model parameters is then
briefly discussed in Sec. III D. Finally, the implications of
the results of this study on pitch control are discussed in Sec.
HIE.

For the results presented below, unless otherwise stated
(e.g., in Sec. I D), the following values of the model pa-
rameters were used:

D,=2, D,=0333, g,=003, p,=1,

)

pr= 0.00117, o=04.

For a medial-surface thickness of 3 mm, Eq. (5) gives a vo-
cal fold body depth of 6 mm, a cover depth of 1 mm, and a
0.09 mm minimum glottal half-width at rest, which roughly
correspond to the nominal vocal fold geometry in Titze and
Talkin (1979).

A. Influence of body-cover stiffness ratio: General
trends

There have been little data available on the body-cover
stiffness ratio during phonation in the literature. Although the
stiffness of the nonactivated body layer may be comparable
to that of the cover layer, the body-cover stiffness ratio may
vary in a wide range under different activities of the TA and
CT muscles (Hirano, 1974). The body-cover stiffness ratio is
also expected to vary in an even larger range in pathological
phonation. A large range of body-cover stiffness ratio has
been used in previous modeling studies. For example, in
Berry et al. (1994), the body-cover stiffness ratio was varied
from 2 to about 13. In Titze and Talkin (1979) a ratio of
10:4:2 was used for the passive stiffnesses of the muscle,
ligament, and mucosa. In the three-mass body-cover model
of Story and Titze (1995), the stiffness ratio of the body and
cover masses was varied in the approximate range of 4-200.
In this study, similar to Titze and Talkin (1979) and Story
and Titze (1995), the body-cover stiffness ratio (or body
stiffness E;,) was varied in a wide range (from 1 to 100) to
encompass the possible physiological range that may occur
in normal and pathological phonation. In normal phonation,
an increasing body-cover stiffness ratio may be realized by
increased contraction of the TA muscle or reduced CT
muscle contraction or a combination of both.

Figure 2 shows the phonation threshold pressure, Py,
the phonation onset frequency, F,, and the prephonatory
minimum glottal half-width, g, as functions of the body stift-
ness E,,. For a straight glottal channel a=0 (circles in Fig. 2),
both the phonation threshold pressure and the phonation on-
set frequency increased with increasing body stiffness E,.
This is consistent with the predictions in Zhang et al. (2007),
which stated that both the phonation threshold pressure and
the phonation onset frequency increase with the natural fre-
quency of the vocal fold structure. In this case, the increase
in the natural frequency of the vocal fold structure was
caused by an increase in the body stiffness. This also ex-
plains why both Py, and F, gradually approached a plateau at
large values of body stiffness. For large values of body stiff-
ness, the natural frequencies of the two-layer vocal fold
structure were primarily determined by the cover stiffness
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FIG. 2. (Color online) (a) Phonation threshold pressure Py, (b) phonation
onset frequency Fj, (c) prephonatory minimum glottal half-width g, and (d)
amplitude of radiated acoustic pressure p, as functions of body-cover stiff-
ness ratio E,/E, for five different glottal channel divergence angles: ©:
-10,0: =5, 0: 0, V: 5, and A: 10. Also shown in (c) is the minimum glottal
half-width at rest (solid line). Model parameters are given in Eq. (5).

and only increased slightly with the body stiffness. Figure
2(c) shows that the prephonatory minimum glottal half-width
decreased with increasing body stiffness. A comparison be-
tween the initial and deformed vocal fold geometries shows
that at small body stiffnesses, the vocal fold not only moved
upwards (superiorly) but also bulged out slightly toward the
glottal midline to close the glottis. As the body stiffened, the
upward movement was gradually restricted and the vocal
fold was forced to move more medially, leading to an even
smaller prephonatory minimum glottal opening. This bulging
effect was highly dependent on the vocal fold geometry (Sec.
Il B) and was consistently small in this case for a straight
glottal channel.

The vocal fold vibration pattern at onset was calculated
by substituting the corresponding eigenvector of Eq. (3) to
Eq. (4). When properly scaled, the vocal fold vibration field
was superimposed onto the deformed vocal fold geometry,
and the corresponding vocal fold motion during one cycle
can be visualized. Figures 3 and 4 show such vocal fold
motion during one oscillation cycle for £,=1 and E,=100,
respectively. The case of E,=1 roughly corresponds to the
first and fourth cases investigated by Story and Titze (1995),
which Hirano (1974) claimed to occur when either the TA
muscle is not active and the CT muscle contracts powerfully,
or both the TA and CT contractions are weak. The case of
E;, =100 roughly corresponds to the second Hirano condition
and the second case in Story and Titze (1995), which may
occur when the TA muscle contracts much more powerfully
than the CT muscle (Hirano, 1974). Comparing Figs. 3 and 4
shows that a major difference between these two cases is that
for E,=1, both the body and the cover were equally involved
in the vibration, whereas the body barely moved for the case
of E,=100. This is consistent with the description of Hirano
(1974) and the observations in Story and Titze (1995) that
the body layer was gradually less involved in vibration with
increasing body-cover stiffness ratio. For a stiff body (Fig.
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t=0 t=T/12 t=2T/12 Vt=3T/12
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FIG. 3. (Color online) The vocal fold geometry during one oscillation cycle.
E,/E.=1, =0 and other model parameters are given in Eq. (5). The first
frame in time is shown in the leftmost plot in the first row, and the last frame
is shown in the rightmost plot in the last row. The thin lines correspond to
the mean deformed vocal fold geometry at onset as obtained from solving
the steady-state problem.

4), the motion was restricted to the medial surface of the
cover layer. The wavelength of the vibration along the me-
dial surface was also much smaller in Fig. 4 than in Fig. 3,
leading to a more wavelike motion in the case of E,=100.
Figure 5 shows the vocal fold motion along the vocal
fold surface as a function of superior-inferior location and
time. With increasing body stiffness, regions of large-
amplitude motion in both the medial-lateral and superior-
inferior components were gradually reduced to the superior
portion of the medial surface. In the case of E;,=1, the entire
medial surface (spans from z=1.8 to 2.8 approximately) al-
most vibrated at the same phase. This is similar to the first
and fourth cases of Story and Titze (1995) in which the upper
and lower masses moved approximately in-phase. In Fig.
5(a), there is another region of in-phase motion along the
inferior surface. However, the vibration amplitude in the
medial-lateral direction was much weaker compared to the
in-phase region along the medial surface. For the case of

t=0 t=T/12 t=2T/12 V1=3T/12
t=4T/12 V't=5T/12 V'1=6T/12 t=7T/12
t=8T/12 V1=9T/12 ¥1=10T/12 ¥1=11T/12

FIG. 4. (Color online) The vocal fold geometry during one oscillation cycle.
E,/E.=100, a=0, and other model parameters are given in Eq. (5). The first
frame in time is shown in the leftmost plot in the first row, and the last frame
is shown in the rightmost plot in the last row. The thin lines correspond to
the mean deformed vocal fold geometry at onset as obtained from solving
the steady-state problem.
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FIG. 5. (Color online) The spatiotemporal plot of the medial-lateral (left)
and superior-inferior (right) components of the vocal fold surface displace-
ment for E,/E.=1 (top) and E,/E.=100 (bottom). a=0 and other model
parameters are given in Eq. (5). For each case, the two components were
normalized by the maximum value of the two components along the surface.

E,=100, the in-phase region along the medial surface was
reduced in size and restricted to the superior part of the me-
dial surface, whereas no in-phase region was observed along
the inferior surface. Consequently, a phase difference can be
clearly observed between the superior and inferior portions
of the medial surface, with the inferior portion of the medial
surface vibrating at a much smaller amplitude. This feature
was not observed in any case studied by Story and Titze
(1995), in which the amplitude of the lower cover mass was
at least comparable to that of the upper cover mass.

Note that in both cases of Fig. 5, the vocal fold exhibited
considerable superior-inferior motion. Although it was often
neglected in lumped-mass models, this vertical motion was
also observed in other continuum model simulations (e.g.,
Titze and Talkin, 1979; Berry et al., 1994) and experiments
(Dollinger et al., 2005; Zhang et al., 2006a).

The gradual confinement of large-amplitude motion to
the medial surface may allow a better flow modulation and
may therefore benefit sound production. Figure 6 shows the
amplitudes of the medial-lateral and superior-inferior compo-
nents of the vocal fold surface displacement associated with
the normalized FSI eigenmode at onset for the two cases
E,=1 (gray lines) and E,=100 (dark thick lines). For com-
parison between cases of different body stiffnesses, the FSI
eigenvector of the coupled system for each case was normal-
ized so that the average kinetic energy of the entire vocal
fold structure over one cycle was 1. Consistent with Figs. 4
and 5, the vocal fold vibration amplitude was significantly
reduced along the inferior and superior surfaces in the case
of E,=100 as compared to the case of E,=1. For the same
vibrational energy of the vocal fold structure (due to eigen-
vector normalization), the restriction of the vibration energy
to the cover layer and the medial surface led to a much larger
vibration amplitude at the superior portion of the medial sur-
face in the case of E,=100 than in the case of E,=1. Note
that vocal fold motion in this region (the superior portion of
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FIG. 6. (Color online) The amplitudes of the medial-lateral (thick solid
lines) and superior-inferior components (dashed lines) of the vocal fold sur-
face displacement along the flow direction for E,/E.=1 (gray lines) and
E,/E,=100 (dark lines). =0 and other model parameters are given in Eq.
(5). For each case, the FSI eigenmode was normalized so that the vibrational
energy was 1. The thin solid line denotes the vocal fold surface.

the medial surface) is the most effective in terms of flow
modulation and affecting the intraglottal pressure distribution
and is therefore the most efficient in terms of sound produc-
tion.

To quantify the effect of different vocal fold vibration
patterns on voice production, a sound production efficiency
was defined as the amplitude of the acoustic pressure p,
radiated into an infinitely long uniform vocal tract due to
vocal fold vibration associated with the corresponding nor-
malized FSI eigenvector. The acoustic pressure p, was cal-
culated as (Zhang et al., 2002)

1
pn,-dS———

V- ndS, 6
2H;, SijW " (©

1

Pe="on ints
where p is the fluctuating flow pressure along the vocal fold
surface S induced by the vocal fold motion w,c is the speed
of sound, and n, is the vertical component (in the flow direc-
tion) of the normal vector of the vocal fold surface pointing
into the vocal fold. Note that Eq. (6) was obtained by assum-
ing that the dimensions of the vocal folds were much smaller
than the acoustic wavelength of interest so that there was no
time delay between contributions to the far field sound from
vocal fold motion at different spatial locations along the vo-
cal fold surface. The terms in the right hand side of Eq. (6)
include contributions of both the dipole source (due to the
fluctuating transglottal pressure) and the monopole source
(due to instantaneous volume change of the vocal folds)
(Zhang et al., 2002). The flow pressure p was calculated
using the normalized FSI eigenvector of the coupled system,
as described in Zhang er al. (2007). The acoustic pressure p,
thus calculated represented the acoustic pressure produced
by vocal fold vibration of unit kinetic energy and thus quan-
tified the voice production efficiency of the corresponding
vocal fold vibration pattern. The amplitude of the calculated
p, Was shown as a function of the body stiffness in Fig. 2(d).
As expected, the sound production efficiency increased with
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increasing body stiffness, as the vocal fold motion was
gradually restricted to the cover layer and the medial surface.
For all cases of this study, the contribution of the monopole
source to the total acoustic pressure was negligible compared
to that of the dipole source.

Although no results were shown for other values of Ej,
as the body stiffness increased, the vocal fold vibration pat-
tern evolved continuously from a vibration pattern similar to
that in the case of E,=1 toward one similar to the case of
E,=100. With increasing body stiffness, the vocal fold mo-
tion was gradually restricted to the cover layer, leading to
increased sound production efficiency. As the region of in-
phase large-amplitude motion was gradually reduced in size
and moved to the superior portion of the medial surface, the
phase difference between the superior and inferior potions of
the medial surface increased with increasing body stiffness,
gradually leading to a wavelike motion along the vocal fold
surface.

B. Effects of glottal channel geometry

Figure 2 also shows the results obtained for nonstraight
glottal channel geometries. Other model parameters were the
same as given in Eq. (5). For divergent glottal channels (tri-
angle symbols in Fig. 2) and convergent glottal channels
with small body stiffnesses (diamond and square symbols in
Fig. 2), similar observations as discussed in Sec. III A can be
made on the variation in phonation threshold pressure, pho-
nation onset frequency, and radiated acoustic pressure with
body stiffness. In general, the phonation threshold pressures
for both divergent and convergent channels were higher than
those for the straight glottal channel. This difference could
be due to different intraglottal pressure distributions associ-
ated with different glottal channels. Another possible expla-
nation is that for a given minimum glottal width, the average
glottal width was larger for divergent and convergent chan-
nels than the straight glottal channel, which weakened the
fluid-structure coupling strength (Sec. III D). The sound pro-
duction efficiency was slightly higher for divergent glottal
channels and convergent channels with small body stiff-
nesses than for the straight glottal channel.

At small values of the body stiffness, the divergent glot-
tis was slightly pushed open by the glottal flow. For conver-
gent glottal channels, the glottis-opening effect was even
more pronounced at small body stiffnesses, and the prepho-
natory glottal opening was consistently larger than the glottal
opening at rest for all values of body stiffness investigated.
This is probably due to the relatively high intraglottal pres-
sure associated with convergent glottal channels. For both
geometries with increasing body stiffness, the prephonatory
glottal opening gradually decreased. For divergent geom-
etries and large enough body stiffnesses (E,>10), the pre-
phonatory glottal opening was actually smaller than the glot-
tal opening at rest. This is consistent with the observation for
the straight glottis, as discussed in Sec. III A: stiffening the
body restricted the vertical motion and caused the vocal fold
to bulge out more in the medial direction, therefore reducing
the prephonatory minimum glottal opening. This is also con-
sistent with clinical observations that vocal folds with in-
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FIG. 7. (Color online) The spatiotemporal plot of the medial-lateral (left)
and superior-inferior (right) components of the vocal fold surface displace-
ment for @=-5 (top) and a=35 (bottom). E,/E,=1 and other model param-
eters are given in Eq. (5). For each case, the two components were normal-
ized by the maximum value of the two components along the surface.

creased cover stiffness (e.g., for scarred vocal folds) are of-
ten blown apart by the airflow even if the glottis was closed
completely at rest. In this case, surgical medialization would
not improve much the voice, and other measures are required
to reduce the cover stiffness (Isshiki, 1998).

Figure 7 shows the vocal fold vibration pattern for a
convergent (e=-5) and a divergent (a=5) glottis for E,=1.
The vocal fold vibration for a convergent glottis [Figs. 7(a)
and 7(b)] exhibited two regions of in-phase medial-lateral
vibration with comparable amplitudes, which is in contrast to
only one region of dominant medial-lateral motion for a
straight glottis [Fig. 5(a)]. In Fig. 7(a), one region is located
in the small area around the superior edge of the medial
surface, while the other spanned a much larger area in the
superior-inferior direction. The vocal fold vibration within
each region was almost in-phase, but the two regions vi-
brated slightly out-of-phase with each other. Note that the
existence of two regions of in-phase motion along the medial
surface is reminiscent of two lumped masses vibrating
slightly out-of-phase, as described by the two-mass model of
Ishizaka and Flanagan (1972).

The vocal fold vibration for a divergent glottis [Figs.
7(c) and 7(d)] was qualitatively similar to that of the straight
glottis, with dominant medial-lateral vibration along the me-
dial surface and a much weaker motion along the inferior
surface. With increasing body stiffness, the region of domi-
nant motion was gradually reduced to the superior portion of
the medial surface, as in the case of a straight glottis [Figs.
5(c) and 5(d)].

C. Competition of coexisting instabilities

For convergent glottal channels with large body stiff-
nesses, the phonation onset pattern as a function of body
stiffness was quite different from that for straight and diver-
gent glottal channels. For small body stiffnesses, the phona-
tion threshold pressure and the phonation onset frequency
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FIG. 8. (Color online) The frequencies (top) and growth rates (bottom) of
the first six eigenvalues (O: first; [J: second; ¢ : third; V: fourth; *: fifth; A:
sixth) of the coupled fluid-structure system as a function of the subglottal
pressure for E,/E.=6 (left) and E,/E.=7 (right). @=-5 and other model
parameters are given in Eq. (5). The vertical line indicates the point of onset.
Despite a slight change in the body-cover stiffness ratio E,/E,., onset oc-
curred as a different eigenmode was destabilized.

gradually increased with increasing body stiffness, as in the
cases of straight and divergent glottal channels. However, for
the case of a —5 divergence angle (square symbols in Fig. 2),
as body stiffness increased from 6 to 7 in Fig. 2, the phona-
tion onset frequency abruptly increased to a much higher
value, whereas the phonation threshold pressure only in-
creased slightly. As the body stiffness further increased, the
phonation onset frequency increased gradually, but the pho-
nation threshold pressure started to decrease.

The abrupt increase in phonation onset frequency in re-
sponse to a slight change in body stiffness was due to the
competition of two coexisting instabilities for dominance.
Figure 8 shows the frequencies and growth rates of the first
six eigenvalues of the coupled system for the two cases be-
fore (E,=6) and after (E;,=7) the abrupt increase in F,. As
shown in Fig. 8, there were two groups of eigenmodes of
strong interaction: the first group included eigenmodes 1 and
2, and the second group included eigenmodes 4, 5, and pos-
sibly 6. At close to onset, there were two eigenmodes (eigen-
modes 2 and 4) that had growth rate close to zero and in-
creasing, but with quite different frequencies. For small
values of body stiffness (E,<7), the interaction between the
first two eigenmodes was strong, and onset occurred as the
second eigenmode first reached a zero growth rate. With in-
creasing body stiffness, this interaction between eigenmodes
in the first group gradually weakened [as indicated by the
increasing phonation threshold pressure for E, <7 in Fig.
2(a)], whereas the interaction between eigenmodes of the
second group became increasingly stronger [as indicated by
the decreasing phonation threshold pressure for E,>7 in
Fig. 2(a)]. At a certain threshold (E,=7), the interaction
within the second group was so strong that the fourth eigen-
mode reached a zero growth rate before the second eigen-
mode did, and phonation onset occurred at the fourth eigen-
mode instead of the second eigenmode, leading to an abrupt
increase in phonation onset frequency.
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FIG. 9. (Color online) The vocal fold geometry during one oscillation cycle.
E,/E.=6, a=-5 and other model parameters are given in Eq. (5). The first
frame in time is shown in the leftmost plot in the first row, and the last frame
is shown in the rightmost plot in the last row. The thin lines correspond to
the mean deformed vocal fold geometry at onset as obtained from solving
the steady-state problem.

Figures 9 and 10 show the vocal fold motion during one
oscillation cycle for the two cases E,=6 and E,=7, respec-
tively. When vibrating at a higher-order eigenmode, the vo-
cal fold vibration along the surface had a smaller wavelength
in the case of E,=7, as compared to the case of E,=6. This
led to a more wavelike motion in the case of E,=7. The
corresponding spatiotemporal plots are shown in Fig. 11.
Compared to the case of E,=6, the vocal fold vibration in
the case of E,=7 exhibited a large medial-lateral motion
along the superior edge of the medial surface and reduced
superior-inferior motion along the vocal fold surface (except
the superior part of the medial surface, where the upheaval-
like motion was observed in Fig. 10). Figure 12 compares
the amplitudes of the medial-lateral and superior-inferior dis-
placement of the normalized FSI eigenmode along the vocal
fold surface at onset for the two cases E,=6 (gray lines) and
E,=7 (dark thick lines). The motion was more restricted to
the superior portion of the medial surface in the case of E,
=7. Note that the vocal fold vibration for E,=7 was similar

t=0 t=T/12 t=2T/12 =3T/12
t=4T/12 V'1=5T/12 V'1=6T/12 t=7T/12
t=8T/12 V't=9T/12 V'it=10T/12 ¥1=11T/12

FIG. 10. (Color online) The vocal fold geometry during one oscillation
cycle. E,/E.=7, a==5, and other model parameters are given in Eq. (5).
The first frame in time is shown in the leftmost plot in the first row, and the
last frame is shown in the rightmost plot in the last row. The thin lines
correspond to the mean deformed vocal fold geometry at onset as obtained
from solving the steady-state problem.
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FIG. 11. (Color online) The spatiotemporal plot of the medial-lateral (left)
and superior-inferior (right) components of the vocal fold surface displace-
ment for E,/E.=6 (top) and E,/E,=7 (bottom). a=-5 and other model
parameters are given in Eq. (5). For each case, the two components were
normalized by the maximum value of the two components along the surface.

to the case of E,=100, in terms of the surface vibration
pattern (e.g., small wavelength, wavelike motion, and restric-
tion of large motion to the superior portion of the medial
surface). However, these common features were achieved in
different ways: one was induced by vibrating at a higher-
order mode, while the other was induced by a stiff body.
The abrupt increase in phonation onset frequency was
accompanied by a boost in sound production efficiency, as
shown in Fig. 2(c). In fact, Fig. 2(c) shows that vibrating at
a higher-order eigenmode was always more efficient in terms
of sound production than vibrating at a lower-order mode.
Although the motion was more uniformly spread over the
vocal fold surface in the case of E,=7, excitation of the

Superior-Inferior Direction

0 0.5 1 1.5 2 25 3 3.5
Displacement

FIG. 12. (Color online) The amplitudes of the medial-lateral (thick solid
lines) and superior-inferior components (dashed lines) of the vocal fold sur-
face displacement along the flow direction for E,/E,=6 (gray lines) and
E,/E.=7 (dark lines). =5 and other model parameters are given in Eq.
(5). For each case, the FSI eigenmode was normalized so that the vibrational
energy was 1. The thin solid line denotes the vocal fold surface.
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FIG. 13. (Color online) (a) Phonation threshold pressure Py, (b) phonation
onset frequency F, (c) prephonatory minimum glottal half-width g, and (d)
amplitude of radiated acoustic pressure p, as functions of body-cover stiff-
ness ratio E,/E, for five different glottal channel divergence angles: ©:
—-10, 0: =5, 0: 0, V: 5, and A: 10. Also shown in (c) is the minimum glottal
half-width at rest (solid line). T=1, D,=6D.=1.2, and other parameters are
given in Eq. (5).

higher-order mode reduced the superior-inferior motion
(compare E,=7 in Fig. 12 to both E,=6 in Fig. 12 and E,
=100 in Fig. 6), which allowed more energy to be spent on
the medial-lateral motion at the superior portion of the me-
dial surface and led to higher sound production efficiency.

D. Effects of other model parameters

As expected, the eigenmode synchronization pattern is
highly dependent on the vocal fold geometry. As an example,
Fig. 13 shows the phonation onset characteristics when the
vocal fold depths were decreased [D,=1.2, D.=0.2, other
parameters the same as in Eq. (5)], which is more similar to
the conditions used in previous studies (Zhang er al., 2007;
Zhang, 2008). For the straight glottal channel, onset occurred
due to the interaction of the first and second eigenmodes. For
convergent glottal channels, onset occurred due to the inter-
action of the second and third eigenmodes for small body
stiffnesses (E, < 8) but changed to the interaction of the first
and second eigenmodes for large body stiffnesses (E,>20).
However, as the second eigenmode was involved in all cases,
no abrupt change in phonation onset frequency was observed
in Fig. 13. For divergent glottal channels, the synchroniza-
tion pattern changed from interaction (coupled-mode flutter)
between the first and second eigenmodes for small body
stiffnesses (E,<<20) to static divergence (zero-frequency in-
stability) at larger body stiffnesses (Ej,>20), which is con-
sistent with Zhang (2008). Note that for this geometry, the
prephonatory minimum glottal half-width was consistently
smaller than that in Fig. 2, indicating an increasing difficulty
for the vocal fold to be deformed laterally with decreasing
vocal fold depth (or aspect ratio).

Figures 14(a) and 14(b) show the phonation threshold
pressure and phonation onset frequency as a function of the
structural loss factor for E,=10 and other parameter values
in Eq. (5). Figures 14(c) and 14(d) show the phonation
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FIG. 14. (Color online) The left column shows the (a) phonation threshold
pressure and (b) phonation onset frequency as functions of structural loss
factor (E,=10, go=0.03). The right column shows the (c) phonation thresh-
old pressure and (d) phonation onset frequency as functions of minimum
glottal half-width at rest (E,=10, 0=0.4).

threshold pressure and phonation onset frequency as a func-
tion of the minimum glottal half-width at rest for E,=10 and
other parameter values in Eq. (5). Figure 14 shows an ap-
proximately linear dependence of the phonation threshold
pressure on both the structural loss factor and the glottal
half-width at rest. Although the values of model parameters
do not exactly match, this almost-linear dependence is con-
sistent with previous experimental observations (Titze et al.,
1995; Chan et al., 1997). As there was no sudden change in
the eigenmode synchronization pattern, the phonation fre-
quency changed continuously in the case of Fig. 14. It de-
creased with increasing structural loss factor and slightly in-
creased with increasing glottal half-width.

E. Implications on pitch control

The implications of the results of this study on pitch
control are better illustrated using dimensional variables.
Figure 15(a) shows four phonation onset frequency contours

in the E.—E, space corresponding to 100, 150, 200, and
250 Hz, respectively. The figure was generated from Fig.
2(b) for a straight glottal channel, a medial surface thickness
T=3 mm, and a vocal fold density of 1000 kg/m?>. Figure 15
shows that the effectiveness of varying body and cover stiff-
ness as a pitch control mechanism depends on the body-
cover stiffness ratio. For very large body-cover stiffness ra-
tios, which correspond to a case with maximum TA
contraction and minimum CT contraction, phonation fre-
quency can be effectively controlled by varying the cover
stiffness, whereas varying the body stiffness as a pitch con-
trol was much less effective. For very small body-cover stiff-
ness ratios, which correspond to a case when both the TA and
CT contractions are weak or when the TA muscle is not
active and the CT muscle contracts powerfully, phonation
frequency can be effectively controlled by varying the body
stiffness, whereas varying cover stiffness had little influence

1100 J. Acoust. Soc. Am., Vol. 125, No. 2, February 2009

FO
50} /’ a1
E,/E=T,
40} / 1
! 250 Hz
& 30t / 1
= /
3
/
w oot 200 Hz J
/
/
10F 150 H 1
E,/E =100
c
0 4 0 = = = = T - T L
()} 50 100 150 200 250
E, (kPa)
Pth
501 ! b
E/E=1 '
c
401 40Q Pa
/
. /
g 30p /304 Pa
=
O
w /
20}
200 Pa
/
10},
, 1Q0 Pa
e Y
0 50 100 150 200 250

E, (kPa)

FIG. 15. (Color online) (a) Constant F,, contours and (b) constant Py, con-
tours in the E,—E, space. T=3 mm and p.=1000 kg/m?>. In (a), the four
solid lines indicate F, of 100, 150, 200, and 250 Hz. In (b), the four solid
lines indicate Py, of 100, 200, 300, and 400 Pa. The two dashed lines indi-
cate constant body-cover stiffness ratio of E,/E.=1 and E,/E.=100. F,, can
be effectively controlled by changing the body stiffness at small body-cover
stiffness ratios (E,/E.<10) and by changing the cover stiffness for large
body-cover stiffness ratios (E,/E.>10).

on phonation frequency. For medium values of body-cover
stiffness ratio, phonation frequency can be controlled by
varying either the body or cover stiffness.

Figure 15(a) also shows that the same phonation
onset frequency can be achieved by different combinations
of body and cover stiffnesses. For example, an F, of
100 Hz can be achieved by [E,,E.]=[8.52,8.52] kPa for
E,/E.=1, [E,,E]=[10.24,2.05]kPa for E,/E.=5, or
[E,,E,]=[43.7,0.44] kPa for E,/E,=100. To produce the
same F, of 100 Hz, the condition of E,/E.=5 required mod-
erate values of both the body and cover stiffnesses. For
body-cover stiffness ratios below or above 5, producing the
same F, required a dramatic increase in either the cover stiff-
ness (increased from 2.05 to 8.52 kPa) or the body stiffness
(from 10.24 to 43.7 kPa). In human phonation, this dramatic
increase would require strong contraction of either the CT or
TA muscles in human phonation, which may be less desir-
able.

Figure 15(b) shows similar contour plots for phonation
threshold pressure. As the phonation threshold pressure is
directly related to the phonation onset frequency, a similar
behavior can be also noted as to the effectiveness of varying
body or cover stiffness as a control mechanism of phonation
threshold pressure.

Note that in reality, the variations in body and cover
stiffnesses are often accompanied by changes in the vocal
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fold geometry. This effect needs to be taken into consider-
ation using a proper muscular model (e.g., Titze and Hunter,
2007) in order to obtain a complete understanding of pitch
control mechanisms in human phonation.

IV. DISCUSSION

The mucosal wave along the vocal fold surface has long
been observed and considered an essential element of vocal
fold vibration. It is generally assumed that mucosal wave
propagation causes a time delay in the movement from bot-
tom to top of the vocal folds (Titze, 1988) or a phase differ-
ence between the upper and lower masses in the two-mass
model. However, the present study and a previous study
(Zhang er al., 2007) show that the phase difference of the
vocal fold vibration along the vocal fold surface was the
consequence of eigenmode synchronization at the same fre-
quency but different phases. A wavelike motion appears only
for vibrations of small wavelengths, which occurred in this
study at large body-cover stiffness ratios (Sec. III A) or when
the vocal fold vibrated at a higher-order mode (Sec. III C). In
general, the vocal fold vibration does not necessarily exhibit
a wavelike motion. More often, two regions of almost-in-
phase vocal fold motion were observed along the vocal fold
surface, and noticeable phase change only occurred in the
transition region. There was no wave propagation (or rather
infinitely fast wave motion) within each in-phase region. In
other words, the presence of mucosal wave is not a necessary
component of the self-sustained vocal fold vibration. How-
ever, the presence of mucosal wave may be desirable in pho-
nation, for example, to achieve high sound production effi-
ciency, as shown in this study.

This study shows that the concept of eigenmode and
eigenmode synchronization may provide a theoretic frame-
work toward a better understanding of the correspondence
between biomechanical and geometric properties of the vocal
folds and the resulting phonation characteristics. In this
study, the vocal fold vibration was calculated as the weighted
combination of the natural modes of the vocal fold structure,
with the weights (the generalized coordinates ¢g) determined
by the fluid-structure interaction or the eigenmode synchro-
nization process. With different combinations of weights,
various types of vocal fold vibration can be generated, as
demonstrated in this study. Therefore, further research on
phonation onset can be pursued in two aspects. The first
aspect focuses on the natural modes and how they would be
affected by the changes in geometric and biomechanical
properties of the vocal fold structure. Such study would yield
valuable information on the characteristic vocal fold vibra-
tion patterns and the associated frequencies (e.g., Titze and
Strong, 1975; Berry and Titze, 1996; Cook and Mongeau,
2007). For example, the restriction of motion toward the
cover layer and the superior portion of the medial surface
with increasing body stiffness can be explained by similar
features in the first few natural modes of the vocal fold struc-
ture as the body stiffness increases. The second aspect aims
to investigate eigenmode synchronization due to the fluid-
structure interaction and to determine the weights used to
calculate the final vocal fold vibration (e.g., Zhang
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et al., 2007). Such studies would reveal which modes have a
strong interaction and eventually synchronize to induce pho-
nation onset and at what conditions bifurcations [e.g., the
abrupt frequency change in Fig. 2(b)] in the behavior of the
coupled system would occur.

This study shows that a slight change in body stiffness
can cause an abrupt change in phonation onset frequency and
vocal fold vibration pattern. Although this study focuses on
phonation onset, it is reasonable to expect that a similar
mechanism may also be present in finite-amplitude vibra-
tions beyond onset and may play a role in register change.
This mechanism requires that the coupled system have two
or more coexisting instabilities so that, given appropriate
changes in certain system parameters, the vocal fold vibra-
tion can switch from one self-oscillating state to another. For
example, Tokuda et al. (2007) showed that a qualitative
change in the vocal fold vibration and phonation frequency
in a three-mass model was observed when two synchronizing
eigenmodes switched from the first and second eigenmodes
to the second and third eigenmodes. Note that these instabili-
ties could be two near-field FSI instabilities (instabilities due
to two pairs of synchronizing eigenmodes, as in the case of
Fig. 8) but could also be one near-field FSI instability and
one due to the coupling of the vocal fold vibration to sub- or
supraglottal acoustics (Zhang et al., 2006a, 2006b).

Although such abrupt change in vocal fold vibration pat-
tern in Tokuda et al. (2007) and the present study was in-
duced by a slight change in vocal fold stiffness, a similar
abrupt change may be also induced by changes in other sys-
tem parameters, which may affect the relative strength of the
coexisting instabilities. Such parameters include flow separa-
tion point (as induced by change in flow rate or vocal fold
geometry, Zhang, 2008), coupling to the sub- or supraglottal
acoustics (Zhang et al., 2006a, 2006b), and vocal fold geom-
etry (Titze, 1994). For example, the abrupt change in vocal
fold vibration pattern and phonation onset frequency, as ob-
served in Fig. 2(b), can be also induced when the medial-
surface shape changes from straight to convergent, without
changing the body stiffness. This can be caused by the acti-
vation of the TA muscle, which may cause the inferior por-
tion of the medial surface to bulge out. Such change in vocal
fold geometry as induced by the contraction of the TA
muscle has been suggested as a possible mechanism of reg-
ister transition from chest to falsetto (Titze, 1994).

V. CONCLUSIONS

Using a linear stability analysis, phonation threshold
pressure, phonation onset frequency, vocal fold vibration pat-
tern, and sound production efficiency were investigated as a
function of the mechanical and geometric parameters of a
body-cover vocal fold model. The conclusions are as fol-
lows:

(1) Increasing body-cover stiffness ratio gradually restricted
the vocal fold motion to the cover layer and the medial
surface where the vocal fold motion is the most effective
in terms of flow modulation, leading to increased voice
production efficiency.
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(2) A wave like motion was observed for vocal fold surface
vibration of small wavelengths, which occurred at high
body-cover stiffness ratios or when the vocal fold vi-
brated at a higher-order mode.

(3) In addition to a reduced wavelength along the vocal fold
surface, self-oscillations at higher-order modes exhibited
reduced superior-inferior motion. This allowed more en-
ergy to be spent on the medial-lateral motion along the
superior portion of the medial surface and therefore
higher sound production efficiency than that when the
vocal fold vibrated at low-order modes.

(4) For small body-cover stiffness ratios, phonation onset
frequency can be effectively controlled by varying the
body stiffness, whereas for larger body-cover stiffness
ratios, phonation onset frequency can be more effec-
tively controlled by varying the cover stiffness.

(5) There was more than one group of eigenmodes that syn-
chronized toward phonation onset in the coupled con-
tinuum system so that at least two potential instabilities
(coupled-mode flutter in this study) existed. At certain
conditions, the phonation threshold pressures associated
with two such instabilities may be close to each other,
and a slight change in the mechanical or geometric pa-
rameters of the system would cause phonation onset to
switch from one instability to another, leading to sudden
changes in (a) phonation onset frequency, (b) vocal fold
vibration pattern, and (c) sound production efficiency. It
is hypothesized that a similar mechanism may play a role
in register change.
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